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ABSTRACT

We show that the one-sided Dyck shift has a unique tail invariant topo-

logically σ-finite measure (up to scaling). This invariant measure of the

one sided Dyck turns out to be a shift-invariant probability. Furthermore,

it is one of the two ergodic probabilities obtaining maximal entropy. For

the two sided Dyck shift we show that there are exactly three ergodic

double-tail invariant probabilities. We show that the two sided Dyck has

a double-tail invariant probability, which is also shift invariant, with en-

tropy strictly less than the topological entropy.

1. Introduction

The study of tail invariant probabilities for subshifts has so far focused mostly

on sofic systems. There are known results for the case of the one sided tail of

(mixing) SFT’s [3]. Also, for the case of the β-shift it is known that there exists

a unique tail-invariant measure [1]. In all of these examples the tail-invariant

measure is also equivalent to a unique shift invariant measure of maximal en-

tropy. Invariant measures for the double-tail (and some sub-relations of the

double-tail) of SFT’s have also been characterized [10].

Let Σ be a finite alphabet. For a subshift X ⊂ ΣZ, we define the double-tail

relation, or homoclinic [10] relation of X to be:

T2(X) := {(x, x′) ∈ X × X ∃n ≥ 0 ∀|k| > n xk = x′
k}.
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A T2(X)-holonomy is an injective Borel function g : A 7→ g(A), with A a Borel

set and (x, g(x)) ∈ T2(X) for every x ∈ A. We say that µ ∈ M(X) is a

double-tail invariant if µ(A) = µ(g(A)) for every T2(X)-holonomy g.

In this paper we identify the tail invariant probability measures for the Dyck

Shift. This subshift was used in [11] as a counter-example for a conjecture of

B. Weiss, showing there are exactly two measures of maximal entropy for this

subshift, both of which are Bernoulli. We show that for the one-sided Dyck

shift one of these measures is the unique tail-invariant probability (Section 3).

We also characterize the double-tail invariant probabilities for the Dyck shifts

(Section 4). In addition to its two equilibrium measures, the two sided Dyck shift

has another double-tail invariant probability — shift invariant, non-equilibrium.

These are the only three double-tail invariant, ergodic probabilities on the two

sided Dyck shift. A different but perhaps related study of the Dyck shift was

carried out by Hamachi and Inoue [9].

2. Definition of the Dyck system

Let us explicitly describe the Dyck language and it’s cover (Fischer automaton).

Let Σ = {αj : 1 ≤ j ≤ m} ∪ {βj : 1 ≤ j ≤ m}, Γ = {αj : 1 ≤ j ≤ m}∗ for

m ≥ 1, and with Λ the empty word, ϕ(a, αj) = aαj ,a ∈ Γ,

ϕ(a, βj) =





βj if a = Λ,or a = (aj)

Λ if a ∈ {aj : 1 ≤ j ≤ m}k, k ∈ N, ak 6= αj

(ai)
k−1
i=1 if a ∈ {aj : 1 ≤ j ≤ m}k, k > 1, ak = αj

Another way to describe the Dyck-Shift is in terms of it’s syntactic monoid.

Let M be the monoid generated by Σ, with the following relations:

1. αj · βj ≡ Λ ≡ 1(mod M), j = 1, . . . , m;

2. αi · βj ≡ 0(mod M), i 6= j.

The m-Dyck language is

L = {l ∈ Σ∗ : l 6= 0(modM)}

and the corresponding (two sided) m-Dyck subshift is

X = {x ∈ ΣZ : (xi)
l
i=r ∈ L for all −∞ < r ≤ l < +∞}

and we will also refer to the one sided m-Dyck subshift:

Y = {y ∈ ΣN : (yi)
l
i=r ∈ L for all 0 ≤ r ≤ l < +∞}.
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These are indeed subshifts, since we only pose restrictions on finite blocks.

Conversely, we will later denote by L(X) = L(Y ) = L the language consisting

of words which are admissible in X . Also, let

Ln = L(Y, n) := L(Y ) ∩ Σn.

Note that when m = 1, X is simply the full 2-Shift. So we will only be

interested in the case where m ≥ 2.

For w = (w0, . . . , wn−1) ∈ L(X, n) define

H(w) =
n−1∑

i=0

m∑

j=1

(δαj ,wi
− δβj ,wi

)

and H(Λ) = 0.

For x ∈ X , let

(1) Hi(x) =





∑i−1
j=0

∑m
l=1(δαl,xj

− δβl,xj
) if i > 0∑−1

j=i

∑m
l=1(δβl,xj

− δαl,xj
) if i < 0

0 if i = 0.

We shall use the same notation for the one-sided subshift. For y ∈ Y , let

Hi(y) =

{ ∑i−1
j=0

∑m
l=1(δαl,yj

− δβl,yj
) if i > 0

0 if i = 0.

where it is clear from the context whether we are refereing to the one sided or

two sided subshift. If w ≡ 1 (mod M) we say that w is a balanced word.

A word w is a Dyck word if it is a minimal balanced word. This means

w = αiw̃βi for some balanced word w̃ and 1 ≤ i ≤ m.

For w ∈ Ln define

m(w) = min{H(u) : u is a prefix of w}
α̂(w) := H(w) − m(w)

β̂(w) := −m(w)

where in the definition of m(w) it is understood that the empty word is a prefix

of any word, so that m(w) ≤ 0. α̂ is the number of unmatched α’s in w, and

β̂ is the number of unmatched β’s in w. We say that w has an unmatched

α at location t if wt = αi, and α̂(wt−1
0 ) < α̂(wt

0). We define “unmatched β”

respectively using β̂. We say that x ∈ X , has an unmatched α (β) at location t

if xt = αi (xt = βi) which is unmatched in any finite word x[a,b] with t ∈ [a, b].
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2.1. Classification of the Dyck system. Before stating and proving the

result regarding invariant measures for the Dyck system, we characterize this

subshift in terms of the classes of subshifts introduced in [2],[8], and [5]. The

purpose of this subsection is to put in broader context the Dyck shift and the

results in the following sections. Detailed discussions of these classes of subshifts

can be found in the references above.

By defining the Dyck language as the language recognized by a Fischer au-

tomaton, we showed that the Dyck system is a coded system (as in [2]). We

claim that the Dyck system is half-synchronized, yet not synchronized (as in

[8]):

Proposition 2.1: Every word w in the Dyck langauge is half synchronizing

Proof. Suppose w = w0, . . . , wn−1. Let (uk)k∈N be an enumeration of the Dyck

words. We define a left infinite sequence x ∈ X as the word w (ending in

coordinate 0), preceded by a concatenation of the words (uk)k∈N, and followed

by an infinite sequence of αj ’s. x is a left-transitive point. ω+(x(−∞, 0]) =

ω+w, since every unmatched αj in x(−∞, 0)] must be in w.

Proposition 2.2: The m-Dyck system is not a synchronized system, for

m > 1.

Proof. Let w ∈ L(X). There exist l, r such that lwr ≡ 1(mod M). Thus, for

i 6= j, αilwrβj 6∈ L(X), but αilw ∈ L(X) and wrβj ∈ L(X). This show that w

is not a synchronizing word.

In [5], Buzzi defined and studied a class of subshifts called subshifts of

quasi-finite type. We state without proof the following

Proposition 2.3: For m > 1, the m-Dyck system is not weak quasi-finite type.

2.2. Maximal measures for the Dyck shift. In [11] Krieger introduced

the following decomposition of X into shift invariant subsets:

A+ = {y ∈ X : lim
i→∞

Hi(y) = − lim
i→−∞

Hi(y) = ∞}

A− = {y ∈ X : − lim
i→∞

Hi(y) = lim
i→−∞

Hi(y) = ∞}

A0 =

∞⋂

i=−∞

( ∞⋃

l=1

{y ∈ X : Hi(y) = Hi+l(y)} ∩
∞⋃

l=1

{y ∈ X : Hi(y) = Hi−l(y)}
)

.
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Since the complement of these sets, X\(A+ ∪A− ∪ A0) is a countable union of

wandering sets, every ergodic shift-invariant probability measure assigns prob-

ability one to exactly one of these sets.

Let further

B+ =

∞⋂

i=−∞

( m⋃

l=1

(
{x ∈ X : xi = αl}∪

∞⋃

k=1

{x ∈ X : xi = βl, Hi−k(x) = Hi(x)}
))

B− =

∞⋂

i=−∞

( m⋃

l=1

(
{x ∈ X : xi = βl}∪

∞⋃

k=1

{x ∈ X : xi = αl, Hi+k(x) = Hi(x)}
))

and observe that A+ ∪ A0 ⊂ B+, A− ∪ A0 ⊂ B−. Let Ω = {α1 . . . αm, β}Z.

Define Ĥ0(x) = 0, Ĥi(x) =
∑i−1

j=0(
∑m

k=1 δxj ,αk
− δxj,β), x ∈ Ω. Denote

B̂+ =

∞⋂

i=−∞

( m⋃

l=1

{ω ∈ Ω : ωi = αl} ∪
∞⋃

k=1

{ω ∈ Ω : ωi = β, Ĥi−k(ω) = Ĥi(ω)}
)

Â+ = {ω ∈ Ω : lim
i→∞

Ĥi(ω) = − lim
i→−∞

Ĥi(ω) = ∞}

Â0 =
∞⋂

i=−∞

( ∞⋃

l=1

{ω ∈ Ω : Ĥi(ω) = Ĥi+l(ω)} ∩
∞⋃

l=1

{ω ∈ Ω : Ĥi(ω) = Ĥi−l(ω)}
)

(g+(y))i =

{
αj yi = αj

β yi ∈ {β1, . . . , βm},
g+ is a one-to-one Borel mapping from B+ onto B̂+, commuting with the shift.

This shows that every shift invariant probability measure µ on X such that

µ(B+) = 1 can be transported to a shift invariant probability on Ω with equal

entropy. By the intrinsic ergodicity of the full-shift, there is a unique measure

µ1 of maximal entropy on X such that µ1(B+) = 1. This measure is supported

by A+ ⊂ B+. By similar arguments, there is a unique measure µ2 of maximal

entropy on X such that µ2(B−) = 1, and in fact µ2(A−) = 1.

Remark 2.1:

sup
µ∈P(A0,T )

{h(A0, T, µ)} = log(2) +
1

2
log m.

Proof. Since A0 ⊂ B+, any shift invariant probability µ0 on X supported

by A0 can also be transported to a probability µ̂0 on Ω via g+. By the er-

godicity, µ̂0([β]) = 1/2(1 − limn→∞ Hn(x)/n) = 1/2. Thus, h(X, T, µ0) =

h(Ω, T, µ̂0) ≤ log(2) + 1/2 log(m), and equality can be obtained by taking

µ̂0 =
∏+∞

i=−∞(1/(2m), . . . , 1/(2m), 1/2).
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3. Tail invariant measures for one sided Dyck shift

In this section we consider the one sided Dyck shift. We prove the following

result.

Theorem 3.1: The tail relation of the one sided Dyck shift is uniquely ergodic.

Furthermore, there exists a unique topologically σ-finite tail-invariant measure

on the one sided Dyck shift (up to multiplication by a positive real number). 1

This theorem is a direct conclusion of Lemmas 3.3, 3.4 and Lemma 3.5 below.

Lemma 3.1: The tail relation of the one sided m-Dyck is topologically transi-

tive.

Proof. Let y = (yn) ∈ {α1, . . . , αm}N ⊂ Y . To prove the lemma, we will show

that T (y) is dense in Y. Let ω = (ω1, . . . , ωr) ∈ L(Y ), then wy∞
r+1 ∈ Y . Thus,

[w] ∩ T (y) 6= ∅. This proves T (Y ) = Y .

If a tail-invariant measure µ on Y is topologically σ-finite, there exists

w ∈ L(Y ) such that 0 < µ([w]) < ∞. A corollary of our main result is that any

such µ is a finite measure.

Define the following tail-invariant decomposition of the one-sided Dyck shift:

G+ = {y ∈ Y : lim
i→∞

Hi(y) = +∞}

G− = {y ∈ Y : lim inf
i→∞

Hi(y) = −∞}.

G0 = {y ∈ Y : lim inf
i→∞

Hi(y) ∈ (−∞, +∞)}

Obviously, Y = G+ ⊎ G− ⊎ G0

Let

Wn = Wm
n := {l ∈ L(Y, n) : l ≡ 1(mod M)}

where M is the syntactic monoid of the m-Dyck shift. Wn is the set of balanced

words of length n. Denote:

wn = wm
n := |Wm

n |

Let

W̃m
n = W̃n = {l ∈ L(Y, n) : l = αi l̃βi , 1 ≤ i ≤ m , l̃ ∈ Wn−2}.

1 A measure µ on topological space X is topologically σ-finite if there is a countable

cover of X \ N by open sets with finite µ-measure, where N is a µ-null set.
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W̃n is the set of Dyck words of length n. Denote w̃n = w̃m
n := |W̃m

n |. Obviously,

w̃n ≤ wn

Lemma 3.2:

wm
2k =

(
2k
k

)

k + 1
mk

Proof. First, we note that wm
2k = mkw1

2k. This follows from the fact that given

a ∈ W 1
2k one can independently choose the “type” of each pair of brackets in

order to create distinct elements in Wm
2k, and every element of Wm

2k can be

created this way. This describes a mk to one mapping Wm
2k 7→ W 1

2k.

All that remains is to prove

w1
2k =

(
2k
k

)

k + 1

This is sometimes called the ballot problem. An elementary proof of this can

be found in [7, pp. 69–73].

Lemma 3.3: There are no topologically σ-finite tail invariant measures, giving

G0 positive measure.

Proof. Suppose µ is a tail invariant measure such that 0 < µ(G0∩ [v]) < ∞ and

|v| = l. Without loss of generality, we can assume µ(G0 ∩ [v]) = 1 . Let Rn be

the subset of X consisting of points which are balanced from time n onwards:

Rn = {y ∈ Y : ∀l ≥ n Hl(y) ≥ Hn(y), lim inf
i→∞

Hi(y) = Hn(y)}

We write the following decomposition of [v]∩Rn, according to the first Dyck

word following v:

[v] ∩ Rn =
⊎

k

⊎

w∈W̃k

(T−n[w] ∩ Rn) ∩ [v]

=
⊎

k

⊎

w∈W̃k

(T−n[w] ∩ Rn+k) ∩ [v], ∀n ≥ l.

We further decompose each of these sets

[v]∩T−n[w]∩Rn+k =
⊎

a∈Ln

(T−n[w]∩Rn+k∩ [a])∩ [v] =
⊎

a∈Ln,al
1=v

[aw]∩(Rn+k).

We note that

Rn+k ∩ [v] =
⊎

b∈L(Y,n+k),al
1=v

Rn+k ∩ [b],
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and for every a, b ∈ Ln+k, µ(Rn+k ∩ [a]) = µ(Rn+k ∩ [b]) because µ is T (Y )-

invariant.

Let rn = µ(Rn ∩ [v]), an = |{α ∈ Ln : αl
1 = v}|,r∞ = supn rn, then

rn =
∑

k

anw̃k

an+k

rn+k,

so

r∞ ≤ sup
n≥0

(∑

k

anwk

an+k

)
r∞.

Since rn ≤ µ([v] ∩ G0) and G0 =
⋃

n Rn, we have 0 < r∞ < ∞ . We obtain

1 ≤ sup
n≥0

∑

k

anwk

an+k

.

Since for any u ∈ Ln and any 1 ≤ j ≤ m, uαj ∈ Ln+1 and there exists

1 ≤ j ≤ m such that uβj ∈ Ln+1, we get the inequality an+1/an ≥ m + 1. This

proves that an/an+2k ≤ 1
(m+1)2k . Also,

w2k =

(
2k
k

)

k + 1
mk

from this follows
∞∑

k=1

anwk

an+k

≤
∞∑

k=1

(
2k
k

)

k + 1

(
m

(m + 1)2

)k

,

but
∞∑

k=1

(
2k
k

)

k + 1
xk = x−1

∫ x

0

∞∑

k=1

(
2k

k

)
tkdt =

1 −
√

1 − 4x

2x
− 1,

so for m > 1
∞∑

k=1

anwk

an+k

≤ (m + 1)2

2m

(
1 − m − 1

m + 1

)
− 1 =

1

m
,

which implies

sup
n≥0

∑

k

anwk

an+k

≤ 1

m
< 1.

This gives us a contradiction to our assumption of the existence of such a

measure µ.

Lemma 3.4: There are no topologically σ-finite tail invariant measures, giving

G+ positive measure.
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Proof. Assume there exist a tail invariant measure µ such that

0 < µ(G+ ∩ [v]) < ∞.

Since G+ is a tail invariant subset, we can assume µ(Gc
+) = 0 by taking µ′(A) =

µ(A ∩ G+). Let

F̃n =
⋂

k>n

{Hk(y) > Hn(y)}

and

Fn = F̃n \
n−1⋃

j=1

F̃j .

Fn are the sets of points which have the first α which is unmatched at coordinate

n. By definition,

G+ ⊂
⋃

n>0

Fn.

So for some n we must have 0 < µ(Fn ∩ [v]) < ∞.

Fn =
⋃

w

m⋃

i=1

(Fn ∩ [wαi]),

where the union is over all w ∈ Ln−1 with α̂(w) = 0. For any K ∈ N we have

that

(Fn ∩ [wαi]) =
⊎

b

(Fn ∩ [wαib])

The union here is over all b ∈ LK such that β̂(b) = 0. The reason there should

be no unmatched β’s in b is that they will not match the αi at coordinate

n. We denote the set of such b’s by UK . Suppose such b has α̂(b) = j with

j > 0. Denote by ξ(b, t), 0 < t < j − 1 (which also depends on w), the

word obtained from b by replacing the leftmost unmatched αs by βi (so as to

match the unmatched αi) and replacing the next t leftmost unmatched αs with

βs. It follows from the construction that for any y ∈ Y , if wαiby ∈ Y then

wαiξ(b, t)y ∈ Y .

This shows there is a tail holonomy π : [wαib] → π[wαib] ⊂ [wαiξ(b, t)], so

µ([wαib]) ≤ µ([wαiξ(b, t)]). For b1, b2 ∈ UK , if ξ(b1, t) = ξ(b2, t), this implies

that b1 and b2 can differ only where the first unmatched α is located — so the

maps ξ(., t) are m to 1. Let

C(K, n, j) :=
⋂

N>K

{HN (y) > j + Hn+1(y)}
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By definition, G+ ⊂ ⋃
K C(K, n, j). From our assumption that µ is supported

on G+, it follows that µ((
⋃

K C(K, n, j))c) = 0. Since C(K, n, j) is an increasing

sequence of sets, there exist K0 such that

µ(C(K0, n, j) ∩ [wαi] ∩ Fn) > (1 − 1/j)µ([wαi] ∩ Fn).

Define:

U(K0, j) = {b ∈ LK0 : α̂(b) > j, β̂(b) = 0}.
Note that if t1 6= t2, then ξ(b1, t1) 6= ξ(b2, t2), because they have different

number of unmatched β’s. We have

C(K0, n, j) ∩ [wαi] ∩ Fn =
⊎

b∈U(K0,j)

([wαib]) ∩ C(K0, n, j) ∩ Fn.

For the above K0, the following inequalities hold:

µ(Fn ∩ [wαi]) ≤
j

j − 1
µ(Fn ∩ [wαi] ∩ C(K0, n, j))

=
∑

b∈U(K0,j)

µ([wαib]) ∩ C(K0, n, j) ∩ Fn)

≤
∑

b∈U(K0,j)

µ([wαib]) ∩ C(K0, n, j)) ≤

Because ξ(., t) are m to 1

≤ m
∑

b∈U(K0,j)

µ([wαiξ(b, t)]).

We average this in equality over t

µ(Fn ∩ [wαi]) ≤
m

j − 1

j−1∑

t=1

∑

b∈U(K0,j)

µ([wαiξ(b, t)]),

because:

[wαi] ⊇
j−1⊎

t=1

⊎

b∈U(K0,j)

([wαiξ(b, t)]).

We obtain

µ(Fn ∩ [wαi]) ≤
m

j − 1
µ([wαi]).

We assume that µ([wαi]) ≤ µ([v]) = µ(G+ ∩ [v]) < ∞, so taking j → ∞ we

obtain that µ(Fn ∩ [wαi]) = 0, and since G+ ∩ [v] is a countable union of such

sets we conclude that µ(G+ ∩ [v]) = 0.
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We conclude that every tail invariant measure of the Dyck shift is supported

by

G− = {y ∈ X : lim inf
i→∞

Hi(y) = −∞}.
To prove unique ergodicity, we need the following

Lemma 3.5: There exists a unique tail-invariant probability measure µ on Y

such that µ(G−) = 1. Furthermore, for any topologically σ-finite tail-invariant

measure µ′ on G−, µ′ = cµ for some positive number c.

Proof. Let Θ = {β1, ..., βm, α}N. Define

H̃0(x) = 0, H̃i(x) =

i∑

j=1

(
−

m∑

k=1

δxj,βk
+ δxj ,α

)
, for x ∈ Θ.

Denote

Θ− = {x ∈ Θ : lim inf
i→∞

H̃i(x) = −∞}.
We will use a one-to-one Borel mapping of G− on to Θ−, introduced in [11].

The map is defined is follows

g− : G− → Θ−

g−(y)i =

{
α yi ∈ {α1, . . . , αm}
βj yi = βj

g− is a bijection, and (y1, y2) ∈ T (Y ) ⇔ (g−(y1), g−(y2)) ∈ T (Θ) for any

y1, y2 ∈ G−. Let p be the symmetric Bernoulli measure on Ω satisfying

p([ω1, . . . , ωn]) = (1/(m + 1))n. By the law of large numbers p(Θ−) = 1, and

therefor p ◦ g−(G−) = 1. So p ◦ g− is a tail invariant probability measure on

Y supported by G−. Suppose µ is a tail invariant probability measure on Y

such that µ(G−) = 1. µ can be transported by g− to a tail invariant probabil-

ity measure q on Θ (supported by Θ−). Since Θ is a full-shift, the uniqueness

of T (Θ)-invariant topologically σ-finite measure follows immediately from the

fact that all cylinders of the same length have equal measure. This proves the

uniqueness of a tail-invariant topologically σ-finite measure on G−.

4. Two sided Dyck shift

4.1. Maximal entropy implies double-tail invariance. In [11] it was

demonstrated that the Dyck shift has two ergodic shift invariant probabilities
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with entropy equal to the topological entropy. Such probabilities are called

equilibrium states. In this section we show that both of these probabilities

are also double-tail invariant.

We introduce the following sets, which are mutually disjoint and are double-

tail invariant. For s, t ∈ {{+∞}, {−∞}, R} we define

Bs
t = {x ∈ X : lim inf

i→+∞
Hi(x) ∈ s, lim inf

i→−∞
Hi(x) ∈ t}.

Let

Ω+
− = {x ∈ {α1 . . . αm, β}Z : lim inf

i→+∞
Ĥi(x) = +∞, lim inf

i→−∞
Ĥi(x) = −∞}

and

Θ−
+ = {x ∈ {β1 . . . βm, α}Z : lim inf

i→+∞
H̃i(x) = −∞, lim inf

i→−∞
H̃i(x) = +∞}.

Where Ĥ and H̃ are defined on {α1 . . . αm, β}Z and {β1 . . . βm, α}Z respectively,

as in formula (1).

Define:

g+ : B+∞
−∞ 7→ Ω+∞

−∞

(g+(y))i =

{
αj yi = αj

β yi ∈ {β1, . . . , βm},

g− : B−∞
+∞ 7→ Θ−∞

+∞

(g−(y))i =

{
βj yi = βj

α yi ∈ {α1, . . . , αm},

g+ is a Borel bijection from B+∞
−∞ to Ω+∞

−∞ and g− is a Borel bijection of the

appropriate sets. The definitions of g+ and g− can also be extended to functions

g+ : BR
−∞ 7→ ΩR

−∞ and g− : B−∞
R

7→ Θ−∞
R

, which are also Borel bijections.

Lemma 4.1: g+ : B+∞
−∞ 7→ Ω+∞

−∞, g− : B−∞
+∞ 7→ Θ−∞

+∞, g+ : BR
−∞ 7→ ΩR

−∞,

g− : B−∞
R

7→ Θ−∞
R

are isomorphisms of the two sided tail relations:

(g+ × g+)(T2(B
+∞
−∞)) = T2(Ω

+∞
−∞)

(g− × g−)(T2(B
−∞
+∞ )) = T2(Θ

−∞
+∞)

(g+ × g+)(T2(B
R

−∞)) = T2(Ω
R

−∞)

(g− × g−)(T2(B
−∞
R

)) = T2(Θ
−∞
R

).
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Proof. We prove the result for g+ : B+∞
−∞ 7→ Ω+∞

−∞, the other results are proved

in the same manner. (g+×g+)(T2(B
+∞
−∞)) ⊂ T2(Ω

+∞
−∞) is trivial, so we show the

other inclusion. Suppose (g+(x), g+(y)) ∈ T2(Ω
+∞
−∞). Let n0 ≥ 0 be such that

g+(x)[−n0,n0]c = g+(y)[−n0,n0]c .

Let

r(i, x) = max{j < i : Hj(x) = Hi(x)}
Clearly, r(i1, x) = r(i2, x) is impossible for i1 6= i2. Since

lim inf
n→+∞

Hn(x), lim inf
n→+∞

Hn(y) > −∞

there exists c such that for some large N , Hi(x) > c for every i > N . Since

lim infn→−∞ Hn(x) = lim infn→−∞ Hn(y) = −∞ , it follows that there exist

some i0 < N such that Hi0(x) = c, so for every i > N , r(i, x) > i0. The same

argument applies for y. Since (r(i, x))i>N and ((r(i, y))i>N are both injective

sequences of integers, bounded from below, it follows that

lim
n→+∞

r(n, x) = lim
n→+∞

r(n, y) = +∞.

Note that for n1, n2 > n0,

Ĥn1(g+(x)) − Ĥn2((g+(x)) = Ĥn1(g+(y)) − Ĥn2((g+(y))

So for all large n enough so that r(n, x) > n0,r(n, y) > n0, there are exactly

two cases:

(1) g+(x)n = g+(y)n = β, in which case r(n, x) = r(n, y) and xr(n,x) =

yr(n,y), so xn = yn

(2) g+(x) = g+(y) = αi for 1 < i < m, and then xn = yn = αi

Obviously, for n < −n0, xn = yn. This proves (x, y) ∈ T2(B
+∞
−∞).

Lemma 4.2: There exists a unique T2-invariant probability of X supported by

B+∞
−∞ , and a unique T2-invariant probability of X supported by B−∞

+∞ . There

are no T2-invariant probabilities on BR
−∞ and B−∞

R
.

Proof. The symmetric product measure p on Ω assigns probability one to Ω+
−.

Transporting the product measure on Ω by means of g−1
+ to B+∞

−∞ yields a tail

invariant probability measure on X , by the previous lemma.

On the other hand, any tail invariant probability on X supported by

B+∞
−∞ ∪ BR

−∞ can be transported to a tail invariant probability on Ω by g+.

This is an injective correspondence, so by the uniqueness of double-tail in-

variant probability on Ω, we conclude the uniqueness of double-tail invariant
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probability on B+∞
−∞ ∪ BR

−∞. In particular, this also proves that no double-tail

invariant probability on BR
−∞ exist. We obtain the results for B−∞

+∞ and B−∞
R

symmetrically.

4.2. A third double-tail invariant probability. For z ∈ {0, 1}Z, we de-

fine:

H̃i(z) =





∑i−1
j=0(δ1,zj

− δ0,zj
) if i > 0∑−1

j=i(δ0,zj
− δ1,zj

) if i < 0

0 if i = 0.

Let

S−∞
−∞ = {z ∈ {0, 1}Z : inf

n≥0
H̃n(z) = −∞ , inf

n<0
H̃n(z) = −∞ }

Let us define a Borel function F : S−∞
−∞ × {1, . . . , m}Z 7→ ΣZ.

Let

F (z, a)n =

{
αj if zn = 1, aγn(z) = j

βj if zn = 0, k = εn(z), and aγk(z) = j

where,

γk(z) =

{ ∑k
i=0 zi k ≥ 0

−∑−1
i=k zi k < 0

εn(z) = max{l < n : H̃l(z) ≤ H̃n+1(z)}.
Since lim infn→−∞ H̃n(z) = −∞ for z ∈ S−∞

−∞ , F is well-defined.

Lemma 4.3: For every z ∈ S−∞
−∞ , a ∈ {1, . . . , m}Z, F (z, a) ∈ X .

Proof. Suppose x = F (z, a) 6∈ X , then there exist n, n′ ∈ Z, n < n′, such that

xn = αi, xn′ = βj with i 6= j and n = max{l < n′ : Hl(x) = Hn′+1(x)}. But

in that case, n = εn′(z), so i = j = aγn(z).

Let µ1 be the symmetric product measure on {0, 1}Z, and µ2 the symmetric

product measure on {1, . . . , m}Z.

Lemma 4.4: µ1(S
−∞
−∞) = 1.

Proof. This follows from recurrence and ergodicity of the simple random walk

on Z.

We define: µ̃ = (µ1 × µ2) ◦ F−1. Since F−1(B−∞
−∞) = S−∞

−∞ × {1, . . . , m}Z it

follows that µ̃(B−∞
−∞) = 1.
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Let us also define a Borel mapping z : B−∞
−∞ 7→ S−∞

−∞ :

z(x)n =

{
1 xn ∈ {α1, . . . , αm}
0 xn ∈ {β1, . . . , βm}.

The following lemma gives an explicit formula for the µ̃ probability of a

cylinder.

Lemma 4.5: Let w ∈ L(X). If the number of matched α’s in w is n1 and

the number of unmatched α’s and β’s is n2 (2n1 + n2 = |w|), then µ̃([w]k) =

m−(n1+n2)(1/2)|w|.

Proof. Denote by f1, . . . , fn1 the locations of matched α’s in w. Denote by

g1, . . . , gn′

2
the locations of unmatched α’s in w. Denote by h1, . . . , hn′′

2
the

locations of unmatched β’s in w. We have n′
2 + n′′

2 = n2. For ~r ∈ Z
n1 , ~s ∈ Z

n′

2 ,
~t ∈ Z

n′′

2 , define:

A~r = {z : γk+fl
(z) = rl 1 ≤ l ≤ n1},

B~s = {z : γk+gl
(z) = sl 1 ≤ l ≤ n′

2},
C~t = {z : γεl

(z) = tl εl = εk+hl
(z) 1 ≤ l ≤ n′′

2}.

Informally, A~r, B~s, C~t determine the locations in the sequence a ∈ {1, . . . , m}Z

involved in selecting the types of α’s and β’s within the coordinates k, . . . , k+|w|.
Now we define:

Z = {z ∈ S−∞
−∞ : zi+k = z(w)i for 0 ≤ i ≤ |w|},

A′
~r = {a ∈ {1, . . . , m}Z : arl

= j if wfl
= αj},

B′
~s = {a ∈ {1, . . . , m}Z : asl

= j if wgl
= αj},

C′
~t

= {a ∈ {1, . . . , m}Z : atl
= j if whl

= βj}.

With the above definitions we can write:

(2) F−1([w]k) = Z × {1, . . . , m}Z ∩
⋃

~s,~t,~r

((A~r × A′
~r) ∩ (B~s × B′

~s) ∩ (C~t × C′
~t
)).

Where the union of ~r, ~s,~t ranges over all vectors such that the set of numbers

appearing in their coordinates are pairwise disjoint. This is a union of disjoint



76 TOM MEYEROVITCH Isr. J. Math.

sets. Thus

(3)

µ̃([w]k) =
∑

~s,~t,~r

(µ1 × µ2)((Z ∩ A~r ∩ B~s ∩ C~t) × (A′
~r ∩ B′

~s ∩ C′
~t
)),

µ̃([w]k) =
∑

~s,~t,~r

µ1(Z ∩ A~r ∩ B~s ∩ C~t)µ2(A
′
~r ∩ B′

~s ∩ C′
~t
).

Now notice that for every ~r, ~s,~t in the sum,

µ2(A
′
~r ∩ B′

~s ∩ C′
~t
) = m−(n1+n′

2+n′′

2 ) = m−(n1+n2).

Also note that Z =
⊎

~s,~t,~r(Z ∩ A~r ∩ B~s ∩ C~t), so µ1(Z) =
∑

~s,~t,~r µ1(Z ∩ A~r ∩
B~s ∩ C~t). Thus, equation 3 can be simplified as follows

µ̃([w]k) =
∑

~s,~t,~r

µ1(Z ∩ A~r ∩ B~s ∩ C~t)m
−(n1+n2)

= µ1(Z)m−(n1+n2) = (1/2)|w|m−(n1+n2).

Theorem 4.1: µ̃ is a T2-invariant probability.

Our method of proving this is as follows: We define a countable set of T2-

holonomies

H = {gw,w′,n : n ∈ Z, w, w′ ∈ L(X) |w| = |w′|, w ≡ w′(mod M), }
By Proposition 4.3 below, we see that µ̃ is invariant under H. Then we prove

that H generates T2, up to a µ̃-null set (Proposition 4.4 bellow). This will

complete the proof.

Lemma 4.6: Suppose w, w′ ∈ L(X, n) with w ≡ w′(mod M). If x, y ∈ ΣZ such

that x[k−n,k] = w, y[k−n,k] = w′ and x[k−n,k]c = y[k−n,k]c , then

x ∈ X ⇔ y ∈ X.

Proof. Suppose x ∈ X . We have to show that y[k−j,j] 6≡ 0(mod M), for every

j > n. Writing x[k−j,j] = swt , we have y[k−j,j] = sw′t and since w ≡ w′ (mod

M), sw′t ≡ swt 6≡ 0 (mod M). This shows that y ∈ X . By replacing the roles

of y and x we get: y ∈ X ⇒ x ∈ X .

Let w, w′ ∈ L(X, n) with w ≡ w′ (mod M) and k ∈ Z. By Lemma 4.6 we

can define gw,w′,k : [w]k 7→ [w′]k to be the Borel function that changes the n

coordinates starting at k from w to w′.

gw,w′,k(. . . , xk−1, w0, . . . , wn−1, xk+n, . . .) = (. . . , xk−1, w
′
0, . . . , w

′
n−1, xk+n . . .)
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Proposition 4.2: If w ≡ w′ mod M) , |w| = |w′|, and k ∈ Z, then µ̃([w]k) =

µ̃([w′]k).

Proof. By lemma 4.5, µ̃([w]k) = m−(n1+n2)(1/2)|w|. Since the number of paired

α in w′ is also n1, we get that µ̃([w]k) = µ̃([w′]k).

Proposition 4.3: If w ≡ w′(mod M), |w| = |w′|, and k ∈ Z, then µ̃ is gw,w′,k

invariant.

Proof. First note that if w ≡ w′(mod M) then for every s, t ∈ L(X) swt ≡
sw′t(mod M). This fact, along with Proposition 4.2 shows that µ̃(A) =

µ̃(gw,w′,k(A)) for every cylinder set A. Since the cylinder sets generate the Borel

sets, this shows µ̃ is gw,w′,k-invariant.

For x ∈ B−∞
−∞ and j > 0 define

aj(x) = min{k > 0 : Hk+1(x) = −j},

bj(x) = max{k < 0 : Hk(x) = −j}.

Note that for any x ∈ B−∞
−∞ , (aj(x))j∈N is strictly increasing, and (bj(x))j∈N

is strictly decreasing. Also note that xaj(x) ∈ {β1, . . . , βm} and xbj(x) ∈
{α1, . . . , αm}, and if xaj(x) = βi then xbj(x) = αi. Let

An
c = {x ∈ B−∞

−∞ : xbj(x) = xbj+c(x) ∀j > n}.

Lemma 4.7: µ̃(An
c ) = 0 for all c ∈ Z \ {0}, n ≥ 0.

Proof. For z ∈ S−∞
−∞ define

b̃j(z) = max{k < 0 : H̃k(z) = j}.

For any x ∈ B−∞
−∞ , b̃j(z(x)) = bj(x). Now, for J ⊂ N with |J | < ∞:

µ̃({xbj(x) = xbj+c(x) for j ∈ J })
=(µ2 × µ1)({(a, z) : alj,1 = alj,2 , lj,1 = b̃j(z) lj,2 = b̃j+c(z) for j ∈ J})
=(1/m)|J|.

This follows from the definition of µ̃ as the image of a product measure, and

from the fact that (bj(x))j∈N is strictly monotonic, so the lj,1’s are all distinct,

and lj,1 6= lj,2 for j ∈ J . Thus, µ̃(An
c ) = 0.
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Proposition 4.4: There exists a double-tail invariant set X0 ⊂ X with

µ̃(X0) = 1, such the countable set of T2-holonomies

H = {gw,w′,n : n ∈ Z, w, w′ ∈ L(X) |w| = |w′|, w ≡ w′(mod M), }

generates T2(X0).

Proof. Let X0 =B−∞
−∞ \⋃

n,m>0

⋃
c 6=0 T−mAn

c . Since µ̃(B−∞
−∞)=1, and µ̃(An

c )= 0

for c 6= 0 by the previous lemma, µ̃(X0) = 1. Also, since B−∞
−∞ and⋃

n,m>0

⋃
c 6=0 T−mAn

c are T2-invariant sets, X0 is T2-invariant. We show that

H generates T2(X0).

Suppose (x, y) ∈ T2(X0). We must show that y = g(x) for some g ∈ H.

There exists n ∈ N so that x[−n,n]c = y−[n,n]c . Let w = x[−n,n], w′ = y[−n,n].

Let c = H(w) − H(w′).

First assume c 6= 0. Let x′ = T−n(x), y′ = T−n(y). Then x′
[0,2n]c = y′

[0,2n]c .

For all k > 2n, Hk(x′) = Hk(y′) + c. Therefore, aj(x
′) = aj+c(y

′) for all

j > 2n + |c|. Also, Since x′
[0,2n]c = y′

[0,2n]c , Hk(x′) = Hk(y′) for all k < 0. So

bj(x
′) = bj(y

′) for all j > 0.

For j > 2n + |c|, denote x′
aj(x′) = βi. Then x′

bj(x′) = αi. Also, y′
aj+c(y′) =

y′
aj(x′) = x′

aj(x′) = βi, so y′
bj+c(y′) = αi. Therefore, x′

bj+c(x′) = y′
bj+c(y′) = αi.

We conclude that x′
bj(x′) = x′

bj+c(x′) for all j > 2n + |c|. This proves that

x ∈ T−nA
2n+|c|
c , but we assumed x ∈ X0, so this is a contradiction, so c = 0.

Therefore, for every k1 < −n and k2 > n, we have

Hk1(x) − Hk2(x) = Hk1(y) − Hk2(y)

Let N = min{k ≥ n : Hk+1(x) < −2n} and N ′ = max{k < −n : Hk(x) =

HN(x)+1(x)}. N and N ′ are well-defined for x ∈ B−∞
−∞ . We have that

HN+1(x) − HN ′(x) = HN+1(y) − HN ′(y) = 0,

and so x[N ′,N ] ≡ y[N ′,N ] ≡ 0( mod M). Thus y = gx[N′,N ],y[N′,N ],N
′(x).

Proposition 4.5: µ̃ is a shift invariant probability.

Proof. Let [w]k be a cylinder set.By lemma 4.5, we have

µ̃([w]k) = m−n1+n2(1/2)|w|

and also

µ̃(T−1[w]k) = m−n1+n2(1/2)|w|.

So µ̃(A) = µ̃(T−1[A]) for every Borel set A.
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One could question whether Proposition 4.5 follows immediately from the

fact that the shift mapping is a normalizer of the double-tail relation. We

note that, in general, double-tail invariant measures are not necessarily shift

invariant. To see this, consider a (finite) subshift consisting of an orbit of a

periodic point. For more elaborate examples of a similar phenomenon see [4],

where it is shown that the “generalized hard core model” has Gibbs measures

which are not shift-invariant.

Proposition 4.6:

hµ̃(X, T ) = log(2) +
1

2
log(m).

Proof. We have hµ̃(X, T ) = limn→∞ hµ̃(x0|x−1, x−2, . . . , x−n). Let

̟(a1, . . . , an) = min{H(a1, . . . , ak) : 0 ≤ k ≤ n}.
By applying lemma 4.5, we get

hµ̃(x0|x−1 = a1, . . . , x−n = an) =

{
log(2m) if ̟(a1, . . . , an) ≥ 0

log(2) + 1
2 log(m) if ̟(a1, . . . , an) < 0.

We have

hµ̃(x0|x−1, x−2, . . . , x−n)

= µ̃(̟(a1, . . . , an) < 0)(log(2) +
1

2
log(m)) + µ̃(̟(a1, . . . , an) ≥ 0) log(2m).

Since limn→∞ µ̃(̟(a1, . . . , an) ≥ 0) = 0, we have

hµ̃(X, T ) = log(2) +
1

2
log(m).

For m ≥ 2, hµ̃(X, T ) < htop(X, T ). Thus, µ̃ provides an example of a shift

invariant probability, which is also T2 invariant, yet has entropy which is strictly

less than the topological entropy, for m ≥ 2 .

4.3. No other double-tail invariant probabilities. In this subsection

we conclude that apart from the two probabilities described in Section 4.1 and

the probability defined in Section 4.2, there are no other ergodic double-tail

invariant probabilities for the Dyck shift.

By Lemma 4.2 we know that there are no more double-tail invariant prob-

abilities on the sets B+∞
−∞ and B−∞

+∞ . We also know by the same lemma that

there are no such probabilities on BR
−∞ and B−∞

R
.

Our next goal is to prove µ̃ is unique on B−∞
−∞ :
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Proposition 4.7: Suppose ν is a T2(B
−∞
−∞) invariant probability. Then for

every w ≡ 1(mod M),

ν([w]t) =
( 1

2
√

m

)|w|

Proof. Let [w]t be a balanced cylinder with |w| = 2n. For i < t, denote

Mi,i+2N = {x ∈ X : xi+2N
i ≡ 1(mod M)}.

Since all balanced cylinders of the same length have equal ν- probability, we can

calculate ν([w]t | Mi,i+2N ) by counting the number of balanced words of length

2N , and the number of such balanced words with w as a subword starting at

position t − i. By Lemma 3.2, the number of balanced words of length 2N is

wm
2N =

(
2N
N

)

N + 1
mN .

The number balanced word of length 2N with w as a subword starting at

position t − i is wm
2N−2n. Thus,

ν([w]t | Mi,i+2N ) =
wm

2N−2n

wm
2N

.

It easily follows that

lim
N→∞

ν([w]t | Mi,i+2N ) = lim
N→∞

wm
2N

wm
2N−2n

=
( 1

2
√

m

)2n

.

Since ν(B−∞
−∞) = 1, we have

ν

( ⋂

N0∈N

⋃

i∈−N

⋃

N>N0

Mi,i+2N

)
= 1.

For N0 >n define a random variable χN0(x) :=min{N >N0 :x∈⋃
i∈−N

Mi,i+2N}.
We have

ν([w]t) =
∑

N>N0

ν(χN0 = N)ν([w]t | χN0 = N) →
( 1

2
√

m

)2n

Proposition 4.8: µ̃ is the unique T2 invariant probability on B−∞
−∞ .

Proof. Suppose ν is a T2 invariant probability on B−∞
−∞ . By proposition 4.7,

(4) ∀w ≡ 1(mod M) ν([w]) =
( 1

2
√

m

)|w|

.

For a ∈ L(X), we say that w ∈ L(X) is a minimal balanced extension of a,

if the following conditions hold:
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1. There exist l, r ∈ L(X) such that w = lar;

2. w ≡ 1 (mod M);

3. for every l′ suffix of l and r′ prefix of r, l′ar′ ≡ 1 implies l′ar′ = w.

Since for every a ∈ L(X),

[a]t =ν

⊎
{[w]s : w is a minimal balanced extension of a, with (wi)

t−s+|w|
i=t−s = a}.

We have

ν([a]t) =
∑

[w]s

ν([w]s) =
∑

[w]s

µ̃([w]s) = µ̃([a]t),

where the sum ranges over minimal balanced extensions of a. This proves ν = µ̃.

By Theorem 4.1, this proves µ̃ is the unique double tail invariant probability of

B−∞
−∞ .

Finally, we show that no other double-tail invariant probabilities exist for the

Dyck Shift.

Define: p̂ : ΣZ 7→ ΣN by p̂((xn)n∈Z) = (xn)n∈N. This is a Borel mapping

that maps the two-sided Dyck shift X onto the one sided Dyck shift Y ⊂ ΣN.

Let K0 = {x ∈ X : Hi(x) ≥ 0, ∀i < 0}, and Ki = T−i(K0)). Notice that

Bs
t ⊂ ⋃∞

i=0 Ki, for s, t ∈ {{+∞}, R}.

Lemma 4.8: If A, B ⊂ Y are Borel sets, and g : A 7→ B is a T (Y )-holonomy,

then there exists a T2(X)-holonomy g̃ : (p̂−1(A) ∩ K0) 7→ (p̂−1(B) ∩ K0).

Proof. We define g̃ : (p̂−1(A) ∩ K0) 7→ (p̂−1(B) ∩ K0) as follows

g̃(x)n =

{
xn n < 0

g(p̂(x))n n ≥ 0.

We prove that g̃ takes p̂−1(A) ∩ K0 into p̂−1(B) ∩ K0. Let x ∈ p̂−1(A) ∩ K0.

Since xn = g̃(x)n for all n < 0, we have Hn(x) = Hn(g̃(x)) for n < 0. Be-

cause x ∈ K0 we have Hn(g̃(x)) ≥ 0 for i < 0. Let y = g̃(x). Now we

prove that y ∈ X . Otherwise, there exist n1, n2 ∈ Z, such that n1 =

min{l < n2 : Hl(y) = Hn2+1(y)}, and yn1 = αi yn2 = βj with i 6= j. If

n1, n2 < 0 then yn1 = xn1 , yn2 = xn2 , so this contradicts the fact that x ∈ X .

If n1, n2 ≥ 0, then yn1 = g(p̂(x))n1 , yn2 = g(p̂(x))n2 , so this contradicts the

fact that g(p̂(x)) ∈ Y .

The case n1 < 0 ≤ n2 remains. We have Hn1(y) ≥ 0 = H0(y), and

Hn2+1(y) = Hn2(y) − 1 (since yn2 = βj). Also, Hn2+1(y) = Hn1(y) ≥ 0.

Since Hi(y) − Hi+1(y) = ±1, there must be some l > 0 such that Hl(y) =
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Hn+1(y). This contradicts the condition on n1, n2. By the definition of g̃,

p̂(g̃(x)) = g(p̂(x)), so g̃(x) ∈ p̂−1(B). The fact that g is one to one and onto

(p̂−1(B) ∩ K0) follows from the fact that

g̃−1(x)n =

{
xn n < 0

g−1(p̂(x))n n ≥ 0.

To complete the proof of the lemma we must show that (x, g̃(x)) ∈ T2(X).

Since g is a T (Y )-holonomy, p̂(x) and g(p̂(x) only differ in a finite number of

(positive) coordinates. x and g̃(x) only differ in the coordinates where p̂(x) and

g(p̂(x)) differ, which is a finite set. So (x, g̃(x)) ∈ T2(X).

Lemma 4.9: There are no T2(X)-invariant probability measures on X supported

by Bs
t , s, t ∈ {{+∞}, R}.

Proof. We first prove the result for BR
t ,t ∈ {{+∞}, R}. Recall that Ki =

{x ∈ X : Hn(x) ≥ Hi(x), ∀n < i}. Notice that BR
t ⊂ ⋃∞

i=0 Ki. Suppose µ

is a T2(X)-invariant probability supported by BR
t ,where t ∈ {{+∞}, R}, then

µ(Ki) > 0 for some i ≥ 0. Without loss of generality we can assume µ(K0) > 0.

Define a probability µ̆ on Y by the formula

µ̆(A) =
µ(p̂−1(A) ∩ K0)

µK0
.

By Lemma 4.8, µ̆ is a T (Y ) invariant probability. Also, since µ(BR
t ) = 1,

µ̆({y ∈ Y : lim inf
n→+∞

Hn(y) ∈ R}) = 1.

Similarly, the existence of a T2(X)-invariant probability supported by B+∞
t ,

where t ∈ {{+∞}, R} would result in a T (Y )-invariant probability µ̆ with

µ̆({y ∈ Y : lim inf
n→+∞

Hn(y) = +∞}) = 1.

But in Section 3 it was proved that the one sided Dyck shift has a unique

T -invariant probability, supported by

{y ∈ Y : lim inf
n→+∞

Hn(y) = −∞}.

Which rules out the possibility that such µ̆ exists.
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